કોઇ પ્રયોગમા બે સ્વત્રંત સાચી ઘટનાઓના વિધાન $A$ અને વિધાન $B$ છે જો $P\left( A \right) = 0.3$ , $P\left( {A \vee B} \right) = 0.8$ હોય તો $P\left( {A \to B} \right)$ ની કિમત મેળવો. (જ્યા $P(X)$ એ વિધાન $X$ સાચુ હોવાની સંભાવના છે )

  • A

    $\frac{{32}}{{35}}$

  • B

    $\frac{6}{{35}}$

  • C

    $\frac{3}{{35}}$

  • D

    માહીતી અધુરી છે

Similar Questions

જો ઘટનાઓ $X$ અને $Y$ છે કે જેથી $P(X \cup Y=P)\,(X \cap Y).$

વિધાન $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$

વિધાન $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$

  • [AIEEE 2012]

એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના $A$, ‘પ્રથમ પ્રયત્ન અયુગ્મ સંખ્યા મળે” અને ઘટના $B$, “બીજા પ્રયત્ન અયુગ્મ સંખ્યા મળે તેમ હોય, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે કેમ તે ચકાસો. 

એક પ્રવેશ કસોટીને બે પરીક્ષાના આધાર પર શ્રેણીબદ્ધ કરવામાં આવે છે. યાદચ્છિક રીતે પસંદ કરેલા વિદ્યાર્થીની પહેલી પરીક્ષામાં પાસ થવાની સંભાવના $0.8$ છે અને બીજી પરીક્ષામાં પાસ થવાની સંભાવના $0.7$ છે. બંનેમાંથી ઓછામાં ઓછી એક પરીક્ષામાં પાસ થવાની સંભાવના $0.95$ છે. બંને પરીક્ષામાં પાસ થવાની સંભાવના શું છે? 

સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પત્તે રાજા અથવા રાણી છે”. $F : $ ‘પસંદ કરેલ પતું રાણી અથવા ગુલામ છે”.

એક પાસો નાંખતા, ધારો કે ઘટના $A,$ મળતી સંખ્યા $3$ કરતા વધારે હોય, ધારો કે ઘટના $B$ મળતી સંખ્યા $5$ થી નાની હોય, તો $ P(A \cup B)$ શું થાય ?