કોઇ પ્રયોગમા બે સ્વત્રંત સાચી ઘટનાઓના વિધાન $A$ અને વિધાન $B$ છે જો $P\left( A \right) = 0.3$ , $P\left( {A \vee B} \right) = 0.8$ હોય તો $P\left( {A \to B} \right)$ ની કિમત મેળવો. (જ્યા $P(X)$ એ વિધાન $X$ સાચુ હોવાની સંભાવના છે )
$\frac{{32}}{{35}}$
$\frac{6}{{35}}$
$\frac{3}{{35}}$
માહીતી અધુરી છે
અહી $S=\{1,2,3, \ldots, 2022\}$ છે. તો યાર્દચ્છિક સંખ્યા $n$ ને ગણ $S$ માંથી પસંદ કરવામાં આવે તેની સંભાવના મેળવો કે જેથી $\operatorname{HCF}( n , 2022)=1$ થાય.
ભારતએ વેસ્ટઇંડીઝ અને ઓસ્ટ્રેલીયા દરેક સાથે બે મેચ રમે છે.જો ભારતને મેચમાં $0,1$ અને $2$ પોઇન્ટ મળે તેની સંભાવના $0.45,0.05$ અને $0.50$ છે.દરેક મેચના નિર્ણય સ્વંતત્ર હોય,તો ભારતને ઓછામાં ઓછા $7$ પેાઇન્ટ મળે તેની સંભાવના મેળવો.
$A$ અને $B$ નિરપેક્ષ ઘટના છે. તેમની સંભાવનાઓ $3/10$ અને $2/5$ છે. તો ચોક્કસ એક ઘટના બનવાની સંભાવના કેટલી થાય ?
જો $A$ અને $B$ કોઈ ઘટના હોય તો $P (A \,\,\cup \,\, B) = …….$
એક છાત્રાલયમાં $60\%$ વિદ્યાર્થીઓ હિન્દી સમાચારપત્ર વાંચે છે, $40\%$ અંગ્રેજી સમાચારપત્ર વાંચે છે અને $20\%$ હિન્દી અને અંગ્રેજી બંને સમાચારપત્ર વાંચે છે. એક વિદ્યાર્થી યાદૈચ્છિક રીતે પસંદ કરવામાં આવ્યો. તે હિન્દી કે અંગ્રેજી પૈકી એક પણ સમાચારપત્ર વાંચતો ન હોય તેની સંભાવના શોધો.